Redigerer
Genetisk algoritme
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
== Begrensninger == Det er begrensninger på bruken av genetiske algoritmer sammenlignet med andre alternative optimaliseringsalgoritmer. * Gjentatt fitness-funksjonsevaluering for komplekse problemer er ofte det mest uoverkommelige og begrensende området av kunstig evolusjonære algoritmer. Å finne optimale løsninger på komplekse fler-dimensjonale, multimodale problemer krever ofte veldig dyre fitness-funksjonsevalueringer. I den reelle verden kan enkelte funksjonsevalueringer kreve alt fra flere timer til dager for å fullføre. Typiske optimaliseringsmetoder kan ikke takle slike problemer, og det er derfor nødvendig å bruke tilnærmet fitness som er mer effektiv for databehandlig. Den mest lovende løsningen for å bruke genetiske algoritmer til komplekse problemer i den reelle verden er så langt sammenslåing av tilnærmingsmodeller. *Genetiske algoritmer skalerer dårlig når kompleksiteten stiger. Det vil si at når mengden elementer som er utsatt for mutasjon er stor blir det ofte en eksponentiell økning i søkestørrelse. Dette gjør det svært vanskelig å bruke teknikken på problemer som er for eksempel design av en motor, et hus eller et fly. For at slike problemer skal kunne benytte seg av genetiske algoritmer må de først bli brutt ned i den enkleste representasjonen som er mulig. Derfor vil typisk evolusjonære algoritmer bli brukt til propeller istedenfor motorer, design av formen på bygninger istedenfor detaljerte byggeplaner, vingeprofil istedenfor hele luftfartøy design. Det andre problemet ved kompleksitet er, hvordan skal en hindre enkelte parter eller kromosomer som har blitt avlet frem til potensielt gode løsninger fra å bli ødelagt av videre mutasjon, spesielt når fitness vurderingen krever at de må kombineres med andre parter. * Den «beste» løsningen er bare best sammenlignet med andre løsninger, noe som fører til at stoppkriteriet ofte er uklart for noen problem. * For spesifikke optimaliseringsoppgaver kan andre algoritmer være mer effektive enn genetiske algoritmer. Bærekraften til genetiske algoritmer er avhengig av kunnskapen som er kjent om oppgaven; velkjente oppgaver har ofte bedre, mer spesialiserte tilnærminger.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 2 skjulte kategorier:
Kategori:Artikler som trenger språkvask
Kategori:Språkvask 2024-08
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon