Redigerer
Elektrisk effekt
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
====Strøm og spenning i trefaskretser==== [[Fil:3 phase AC waveform.svg|thumb|De tre sinus{{shy}}kurvene som danner trefase veksel{{shy}}spenning eller strøm. Langs x-aksen er det angitt grad{{shy}}tallet, men dette kunne også vært tiden. I et kraft{{shy}}system med 50 Hz vil hver av kurvene gjennom{{shy}}løpe én hele periode i løpet av 20 ms. 360° tilsvarer da tiden 20 ms. Langs y-aksen vil en ha spenning eller strøm.]] Trefasesystemet har vært praktisk talt enerådende etter at det ble introdusert ved [[den internasjonale elektrotekniske utstillingen i 1891]] i Frankfurt am Main i Tyskland.<ref name=MD2>{{Kilde www | forfatter=Martin Doppelbauer | url= http://www.eti.kit.edu/english/1376.php |tittel= The invention of the electric motor 1800-1854 – A short history of electric motors - Part 2 | besøksdato= 11. januar 2015 | verk= |utgiver=Karlsruher Instituts für Technologie (KIT) | arkiv_url= |arkivdato= |sitat= }}</ref><ref>{{Kilde www | forfatter= | tittel=Laufen to Frankfurt 1891 | url=http://www.edisontechcenter.org/LauffenFrankfurt.html | besøksdato= 14. januar 2015 | verk= |utgiver=Edison Tech Center | arkiv_url= |arkivdato=2013 |sitat= }}</ref> Det er flere grunner til det, noen av de viktigste årsakene er at: * en trefaset motor eller generator vil ha mindre volum og vekt enn en tilsvarende maskin for enfasestrøm, * for å overføre denne samme effektmengden i en kraftlinje vil det kreves mindre samlet ledertverrsnitt for trefase- enn for enfasestrøm, * at trefasesystemet gir et roterende magnetfelt i motorer noe som gjør at de blant annet blir ''selvstartende''. Spesielle tiltak gjøres for å få enkelte motortyper for enfase til å starte å rotere når de tilkobles spenning.<ref>{{Kilde www | forfatter=Vipin Kumar | tittel=Advantages of Three Phase System over Single Phase System | url=http://www.electrical4u.com/advantages-of-three-phase-system-over-single-phase-system/ | besøksdato= 28. september 2015| verk= | utgiver=electrical4u | arkiv_url= |arkivdato=2013 |sitat= }}</ref><ref>{{Kilde www | forfatter=Dharma Teja | tittel=Advantages of 3 Phase System Compared to Single Phase System | url=http://electricalquestionsguide.blogspot.no/2012/09/advantages-of-3-phase-system-compared.html | besøksdato= 28. september 2015 | verk= | utgiver=Electrical Interview Questions & Answers | arkiv_url= |arkivdato=29. september 2012 | sitat= }}</ref> I et trefasesystem er det tre faseledere istedenfor to som i enfasesystem behandlet over. Disse lederne må tilknyttes generatorer spesielt for trefasestrøm, som en kan tenke seg som tre spenningskilder som hver gir ut vekselspenning med samme størrelse, altså lik frekvens og amplitude.{{tr}} Imidlertid er de tre fasespenningene faseforskjøvet med nøyaktig 120°, eller <math>2 \pi / 3</math> radianer. Ideell ''syklisk symmetrisk'' sinusformet trefase spenning eller strøm er vist i figuren øverst til høyre. Generelt beskrives de tre spenningene av følgende trigonometriske funksjoner: :<math>u_{L1}=\hat u_{L1} \cos(\omega t )</math> :<math>u_{L2}=\hat u_{L2} \cos(\omega t - \frac{2 \pi}{3})</math> :<math>u_{L3}=\hat u_{L3} \cos(\omega t + \frac{2 \pi}{3})</math> Der symbolene er de samme som tidligere, og ''L1'', ''L2'' og ''L3'' tilsvarer fasene henholdsvis 1, 2 og 3 i figuren. Det er for øvrig vanlig å betrakte spenningene som såkalte ''[[fasevektorer]]'', men dette konseptet blir ikke omtalt her. At de tre fasene er forskjøvet med 120° vil også si at det er en tidsforskyvning av det tre sinuskurvene. Om frekvensen er {{nowrap|50 Hz}} vil faseforskyvningen være {{nowrap|6,667 ms}} mellom hver av spenningene eller strømmene. Også strømmen som går i et trefasesystem vil være symmetrisk og beskrives av de samme formlene som over, forutsatt at belastningen er symmetrisk. [[Fil:3 Phase Power Connected to Wye Load.svg|thumb|En trefaset generator koblet i stjerne (venstre) og en last også koblet i stjerne.]] [[Fil:3 Phase Power Connected to Delta Load.svg|thumb|En trefaset generator koblet i stjerne (venstre) og en last koblet i trekant.]] Figuren til høyre viser et prinsipielt trefasesystem med tre spenningskilder ''V<sub>1</sub>'', ''V<sub>2</sub>'' og ''V<sub>3</sub>'' til venstre i figuren og tre belastninger ''Z<sub>y</sub>'' til høyre. Belastning kan være kombinasjoner av resistorer, spoler og kondensatorer, og det forutsettes at disse er like. Denne sammenkoblingen av spenningskildene og de tre belastningene kalles for ''stjernekobling''. Med stjernekobling er det et fellespunkt for spenningskildene og belastningene som kalles ''nøytralpunkt''. Nøytralpunktet kjennetegnes med at spenningen er null. I figuren nederst til høyre er det vist det samme skjemaet, men her er lastene satt sammen på en måte som kalles ''trekantkobling''. Dermed er impedansene for belastningen merket ''Z<sub>∆</sub>''{{tr}} Med de tre belastningene i stjernekobling vil strømmen inn til hver av impedansene være den samme som strømmen som går i faselederen hver av dem er tilknyttet. Derimot vil strømmen inn til lastene med trekantkobling ikke lenger være den samme. Forholdet mellom strøm i faselederne og i hver av impedansene er gitt av denne sammenhengen: :<math> I_1 = \sqrt{3} I_{12}, </math> :<math> I_2 = \sqrt{3} I_{23}, </math> :<math> I_3 = \sqrt{3} I_{31}, </math> Der en kaller <math>I_1</math>, <math>I_2</math> og <math>I_3</math> for linjestrømmer, og <math>I_{12}</math>, <math>I_{23}</math> og <math>I_{31}</math> for fasestrømmer. For øvrig er det også vanlig å benevne fasestrømmene med bokstaven <math>\phi</math>, slik at fasestrømmene over kun benevnes <math>I_\phi</math>.<ref name=EC412>[[#EC|James W. Nilsson: ''Electric Circuits'' side 412.]]</ref> [[Fil:Dreiphasendrehstrom mit Strangspannungen.PNG|thumb|De tre linje{{shy}}spenningene og fase{{shy}}spenningene i et kraft{{shy}}system med {{nowrap|400 V}}. Amplituden for linje{{shy}}spenningene er <math>\sqrt{2}</math> ganger større enn linje{{shy}}spenningen, altså {{nowrap|565 V}}. Det samme gjelder fase{{shy}}spenningenes amplitude{{shy}}verdi på {{nowrap|325 V}}. Fase{{shy}}spenningene er <math>\sqrt{3}</math> mindre enn linje{{shy}}spenningene, mens det er en fase{{shy}}forskyvning mellom dem på 30°.]] For spenningene i stjernekoblingen i figuren øverst er størrelsen for linjespenninger og fasespenninger forskjellige. Linjespenningene defineres som spenningen mellom hver av de tre faselederne, mens fasespenningene er spenningene mellom hver av faselederne og nøytralpunktene. Linjespenningene ble over kalt ''U<sub>L1</sub>, U<sub>L2</sub>'' og ''U<sub>L3</sub>'', men fra nå av kalles diss ''U<sub>12</sub>, U<sub>23</sub> og U<sub>31</sub>''. Fasespenningene kalles ''U<sub>1n</sub>, U<sub>2n</sub> og U<sub>3n</sub>''. Forholdet mellom linje- og fasespenninger er: :<math> U_{12}= \sqrt{3} U_{1n}, </math> :<math> U_{23} = \sqrt{3} U_{2n}, </math> :<math> U_{31} = \sqrt{3} U_{3n}, </math> Det betyr altså at linjespenningene er <math>\scriptstyle \sqrt{3} \approx 1,73</math> større enn fasespenningene. For øvrig er det vanlig i litteraturen å benevne fasespenning som <math>U_{\phi}</math>, og andre faseverdier som impedans <math>Z_{\phi}</math>, effekt <math>P_{\phi}</math> og reaktiv effekt <math>Q_{\phi}</math> når sammenhenger i trefasesystemet skal utledes matematisk.<ref name=EC412/>
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 1 skjult kategori:
Kategori:Artikler som trenger referanser
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon