Redigerer
Generator
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
== Konstruksjon og virkemåte for moderne generatorer == === Likestrømsgeneratorer === [[Fil:Dynamo 2(PSF).png|mini|En dynamo bestående av: Hjul for reimdrift (A), feltpoler i stator (B), rotorviklinger (C), kullbørster (D) og kommutator (E).]] [[Fil:Kommutator universalmotor stab.jpg|mini|Nærbilde av en liten masse-<br />produsert rotor der kommutatoren er trommelen foran til venstre. Denne har kobberlameller (eller segmenter) som er elektrisk isolert fra hverandre. Hver lamell har forbindelse til rotorens viklinger slik som Gramme var den første til å konstruere. Børster av kull ligger inn mot kommutatoren og danner forbindelsen til den eksterne elektriske kretsen.]] En likestrømsgenerator består av en stator, rotor med aksling, viklinger og kommutator. Statoren er sirkelformet og i dens indre omkrets er polene plassert. Disse danner magnetfeltet mellom seg, med enten bare et par med nord og sørpol som står overfor hverandre, eller flere par. Med flere par står disse vekselvis med forskjellig polaritet rundt omfanget av statoren. Statorens poler magnetiseres av likestrøm i viklinger i form av spoler (solenoider) med mange tørn. Polene på stator stikker frem fra selve statorringen for å gi plass til feltviklingene. En kaller slike for utpregede poler. Rotoren er plassert i statorens senter og har viklinger rundt omfanget. Rotorens viklinger ligger i spor i overflaten av dens omfang og er tilknyttet kommutatoren. Bilde til høyre viser en liten rotor for en likestrømsmaskin. Her ser en tydelig at kommutatoren er sammensatt av lameller som hver har kontakt med viklingene. Lamellene er elektrisk isolert fra hverandre. Børstene har kontakt med lamellene og bringer strømmen ut til den eksterne kretsen. Det dannes vekselspenning i rotorviklingene og kommutatorens oppgave er å virke som en mekanisk likeretter. Viklingene i rotor kalles også ankerviklinger. Både statoren og rotoren er konstruert av laminerte blikkplater av bløt stål.<ref>[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 390-391.]]</ref> Spenningen fra en likestrømsgenerator blir ikke helt konstant, men med distribuerte viklinger og mange komutatorsegmenter per per pol kan spenningen bli meget jevn. (Uten rippel eller bølger.)<ref>[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 392-393.]]</ref> Vinklingene i statoren får sin strøm fra ankeret, og kan i prinsippet være [[Seriekobling|koblet i serie]] eller [[Parallellkopling|parallell]] med ankeret. Det siste kalles shuntvikling og er mest brukt. Grunnen til at koblingen brukes mest er at spenningen som mates ut til forbrukerne (den eksterne kretsen) blir konstant og i mindre grad avhengig av belastningen. Ved hjelp av en justerbar motstand, en reostat, kan strømstyrken til feltviklingene justeres og dermed endres også spenningen.<ref>[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 396.]]</ref> Ved å holde hastigheten til generatoren konstant med en regulator tilknyttet [[turbin]]en som driver den og justere reostaten, kan spenningen holdes mer eller mindre konstant selv om belastningen varierer. Ved oppstart av en likestrømsgenerator er en avhengig av at det er en viss magnetisme gjenværende fra sist den var i bruk. Når generatoren først begynner å rotere vil den gjenværende [[remanens]] som er i jernkjernen i feltpolene gi et magnetisk felt som generere en liten strøm i ankeret. Denne strømmen som rotasjonen skaper går gjennom feltviklingene og skaper et ytterligere sterkere magnetisk felt som igjen genererer en større ankerstrøm. Denne prosessen med stadig øking av magnetfelt og indusert strøm fortsetter, etter en tid gir maskien ut ønsket spenning.<ref>[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 411-412.]]</ref> Når maskinen går med konstant turtall og tilkobles lasten (eksternt nett) justeres spenningen med reostaten, som forklart over. Dersom som lasten varierer vil utgangsspenningen variere. For å holde klemmespenningen nær konstant kan reostaten erstattes av en feltstrømregulator. I det spesielle tilfellet at en likestrømsgenerator drives med varierende turtall, som for eksempel en bildynamo, blir reguleringen av spenningen annerledes. Da brukes en regulator som endrer feltstrømmen, slik at utgangsspenningen kan holdes nær konstant over et stort turtalls- og lastområde. === Anvendelse av likestrømsgeneratoren i dag === [[Fil:Vamma kraftstasjon turbiner og generatorer.jpg|mini|Generatorene i Vamma kraftstasjon er synkronmaskiner. På akslingen til hver av disse er det tilknyttet en likestrømsgenerator. Denne kalles også magnetiseringsmaskin og skaffer likespenning til rotoren (polhjulet). Magnetiseringsmaskinen kan sees helt til høyre på det nærmeste aggregatet.]] Likestrømsgeneratoren ble raskt utkonkurrert av vekselstrømsgeneratoren på grunn av vanskene med å overføre likestrøm over store avstander. Likestrømsgeneratoren har likevel hatt stor utbredelse som magnetiseringsmaskin for vekselstrøms synkrongeneratorer. Det må til en likespenningskilde for å skape feltet i en synkrongenerator, mer om dette følger i avsnittet nedenfor. Et annet sted der likestrømsgeneratoren har hatt sin utbredelse er i forbindelse med elektrisk jernbanedrift. Dette er tilfelle i for eksempel Polen og Italia. Typisk produseres likestrømmen ved omforming av vekselspenning fra det offentlige overføringsnettet. En trefase vekselstrømsmotor driver likestrømsgeneratorer som mater ut til jernbanens kontaktledningsnettet. Et alternativ er å lage likespenning av vekselstrøm via [[likeretter]]e. Tidliger var disse basert på kvikksølvlikerettere, men i dag er disse erstattet av [[halvleder]]teknologi. En annen type omformer er trinnløs omforming av vekselspenning til spenning med en annen frekvens. Dette kan skje ved at en trefaset motor driver en likestrømsgenerator på samme aksling. Likestrømsgeneratoren gir strøm til en likestrømsmotor der turtallet enkelt kan justeres. Likestrømsmotorene har felles aksling med en vekselstrømsgenerator som forsyner et distribusjonsnett der variabel frekvens er ønskelig. Dette kalles en ac-dc-dc-ac-omformer, og selv om en slik installasjon enkelt kan omforme vekselspenning er den stor, kostbar og vedlikeholdsintensiv. I tillegg kommer store energitap. Dette er noen eksempler på bruk av likestrømsgeneratorer som har hatt stor utbredelse, men som i stor grad har blitt erstattet av halvlederteknologi. Også når det gjelder magnetiseringsmaskiner for synkrongeneratorer har likestrømsgeneratorene blitt erstattet med halvlederteknologi. Noen av grunnen til at en ikke bruker denne typen maskiner er at spesielt kommutatoren krever mye vedlikehold. Dessuten vil kullbørstene i forbindelse med kommutatoren forårsake kullstøv som er elektrisk ledende, og kan gi kortslutninger i maskinen. === Synkrongeneratoren === [[Fil:Rotary field magnet and exciter armature for high-speed alternator (Rankin Kennedy, Electrical Installations, Vol II, 1909).jpg|mini|Polhjulet til en synkrongenerator med utpregede poler. Hastigheten til denne må være 1800 rpm om frekvensen til spenningen skal være 60 Hz, og 1500 rpm for 50 Hz. Legg merke til rotoren til magnetiseringsmaskinen på enden av rotoren.]] [[Fil:Bundesarchiv B 145 Bild-F002763-0009, Berlin, AEG Turbinenfabrik.jpg|mini|Vikling av en stator til en stor turbogenerator i AEG-Turbinenfabrik i Berlin i 1955. Legg merke til at viklingene utnytter hele statoromfangets omkrets, dette kalles ''distribuerte viklinger''. Denne måten å vikle generatoren på er et av flere tiltakt for at spenningen skal bli mest mulig sinusformet.<ref>[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 164.]]</ref>]] Synkrongeneratorens navn henspiller på at frekvensen til spenningen som blir generert er proporsjonal med turtallet til rotoren. Rotoren kalles også polhjulet og har elektriske viklinger som gir magnetisk felt. Rotoren forsynes via sleperinger, fra en ytre likespenningskilde. Dette kan være en likestrømsgenerator montert på generatorens aksling (egenmagnetisering), eller en separat likeretter (fremmedmagnetisering) basert på halvlederteknologi. Rotoren har enten utpregede poler eller sylindrisk rotor om hastigheten er svært stor. Det siste kalles en turbogenerator og er som navnet sier vanlig når generatoren drives av en turbin. Rotoren setter opp et roterende magnetfelt og dette induserer spenning i statorens viklinger. Vinklingene i stator er montert i spor i dens indre omfang og er tilknyttet den ytre elektriske kretsen, se bilde til høyre. Statorens viklinger kalles også ankerviklinger. Sammenhengen mellom antall polpar på polhjulet, geometrisk plassering av ankerviklingene, samt rotasjonshastighet bestemmer spenningens frekvens, faseforskyvningen mellom spenningene og spenningens sinusform og amplitude.<ref name="DNTO216-217">[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 216-217.]]</ref> Synkronmaskinen er i dag så å si enerådende som generator. I moderne kraftsystemer er hundrevis eller tusenvis av generatorer koblet sammen i parallell. Dermed blir både spenningen og frekvensen for en enkelt generators terminaler hovedsakelig bestemt av de andre maskinene i kraftsystemet. Overføringsnettet sørger for at synkronmaskiner som geografisk er adskilt med mange hundre kilometer går med samme frekvens. Alle større generatorer må allikevel ha turtallsregulering og spenningsregulator for at kraftsystemets frekvens og spenning skal være noenlunde konstant. Selv om en enkelt generator utgjør bare en svært liten del av systemets ytelse, må alle enhetene bidra med å holde frekvens og turtall konstant.<ref name="DNTO216-217" /> Unntaket er små generatorer i mini- og mikrokraftverk, som kan gjøres enklere og billiger uten disse regulatorene. Store kraftsystemer har fordeler ved at systemene kan ha stor pålitelighet uten at den samlet reservekapasiteten må gjøres uforholdsmessig stor. Reservekapasitet vil si enheter (kan være generatorer eller kraftledninger) som ikke er i drift (ofte kalt ''kald reserve'') eller ikke utnyttes fullt ut (''roterende reserve''). Dette er gunstig for å oppnå redundans, men gir blant annet dårlig utnyttelse av investert kapital. Forskjellige energikilder kan utnyttes over et stort geografisk område, for eksempel er praktisk talt hele Nord-Amerika sammenkoblet til et stort kraftnett. Kraftstasjoner er ofte svært kompliserte og kostbare, dermed blir [[stordriftsfordel]]er attraktive å utnytte i et stort sammenhengende system der svært store kraftverk utgjør energikildene.<ref>[[#PSSC|Prabha Kundur: ''Power systems stability'' side 5.]]</ref> Dermed blir også generatorene svært store (en ønsker vanligvis ikke mange generatorer i et kraftverk), slik som eksemplene i avsnittet under gir eksempler på. === Ytelse og typiske parametre for generatorer === [[Fil:Generator1 og 2 hakavik.jpg|miniatyr|Generator 1 og 2 i [[Hakavik kraftverk]], Øvre Eiker. Kraftverket forsyner jernbane med enfase, 16 2/3 Hz til jernbanen.]] Tidlige generatorer og tilhørende kraftsystemer hadde frekvenser på for eksempel 25, 50, 60, 125, og 133 Hz. Dette gir problemer for samkjøring og tidlig ble 60 Hz introdusert som standard i Nord-Amerika. 50 Hz ble valg i resten av verden.<ref>[[#PSSC|Prabha Kundur: ''Power systems stability'' side 4.]]</ref> Det som ble sett på som akseptabel spenning i generatorer ble også stadig økt. I dag er spenningen i generatorer typisk i intervallet 11 – 35 kV.<ref>[[#PSSC|Prabha Kundur: ''Power systems stability'' side 6.]]</ref> Disse er ofte direkte tilknyttet en transformator som mater ut effekt med den spenningen som er ønsket i det aktuelle nettnivået. Typisk vil generatorenes og kraftverkets ytelse bestemme tilknytning til aktuelt nettnivå. Det som hevdes å være verdens største generatorer er to maskin på 1750 MW til Taishan 1 kraftverk i Kina. Dette er et kjernekraftverk som i 2013 fortsatt var under bygging.<ref>{{Kilde www| forfatter= | tittel=Giant generator hits the road | url=http://www.world-nuclear-news.org/NN_Giant_generator_hits_the_road_2808131.html | besøksdato= 21. mars 2015 | verk= |utgiver=World Nuclear News | arkiv_url= |arkivdato=28. august 2013 |sitat= }}</ref> I slike sammenhenger brukes typisk synkronmaskiner med sylindrisk rotor. Rotasjonshastigheten er da gjerne 1500 eller 3000 rpm om frekvensen er 50 Hz. Slike store maskiner trenger effektiv kjøling og hydrogen brukes ofte som kjølemedium i et totalt lukket system. Fordelen med hydrogen er at ventilasjonstapene blir lave, samt at varmetransporten fra de varme overflatene i generatoren ([[konveksjon]]) blir mer effektiv.<ref>[[#DNTO|A. E. Fitzgerald: ''Electric machinery'' side 577.]]</ref> Når det gjelder generatorer med utpregede poler er verdens største de som er levert til [[De tre kløfters dam]], med enheter på over 800 MW.<ref>{{Kilde www| forfatter= | tittel=Generators | url=http://www.voith.com/en/products-services/hydro-power/generators-557.html | besøksdato= 21. mars 2015 | verk= |utgiver=Voith | arkiv_url= |arkivdato= |sitat= }}</ref> Slike maskiner er gjerne både luft og vannkjølte. For å gi et perspektiv på størrelsene til disse uvanlig store generatoren kan det nevnes at i Norge er langt de fleste generatorer i størrelsen 1 - 10 MW. Bare 67 enheter har en effekt over 100 MW.<ref>{{Kilde bok| forfatter=Lars Thune m.fl. | tittel=Kulturminner i norsk kraftproduksjon – en evaluering av bevaringsverdige kraftverk (KINK) | utgivelsesår=2006 | forlag=Norges vassdrags- og energidirektorat | isbn=82-410-0547-4 }}</ref> Typisk vil allikevel generatorene i varmekraftverk, der størsteparten av verdens elektrisitetsproduksjon kommer fra, være betydelig større enn vannkraftgeneratorer.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 4 skjulte kategorier:
Kategori:Anbefalte artikler
Kategori:Artikler med offisielle lenker og uten kobling til Wikidata
Kategori:Artikler som trenger referanser
Kategori:Artikler uten offisielle lenker fra Wikidata
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon