Redigerer
Parabel
(avsnitt)
Hopp til navigering
Hopp til søk
Advarsel:
Du er ikke innlogget. IP-adressen din vil bli vist offentlig om du redigerer. Hvis du
logger inn
eller
oppretter en konto
vil redigeringene dine tilskrives brukernavnet ditt, og du vil få flere andre fordeler.
Antispamsjekk.
Ikke
fyll inn dette feltet!
== Geometrisk definisjon == En parabel kan defineres som det [[geometrisk sted|geometriske sted]] for et punkt som ligger like langt fra et gitt punkt som fra en gitt rett linje. Punktet kalles for ''brennpunktet'' eller ''fokus'', og linjen kalles ''styrelinje'' eller ''direktrise''. Generelt er et kjeglesnitt det geometriske sted for et punkt der avstanden fra brennpunktet er proporsjonal med avstanden til styrelinjen, og proprosjonaliteteskonstanten kalles ''eksentrisiteten''. En parabel er altså et kjeglesnitt med eksentrisitet lik 1. Et plan som skjærer en rett kjegleflate med sirkulær basis vil framstille en parabel dersom toppvinkelen i kjeglen er lik vinkelen som planet danner med kjegleaksen. Eksempelvis vil en kjegle som har toppvinkel lik nitti grader danne en parabel dersom planet står normalt på en [[generatrise]] i kjegleflaten.
Redigeringsforklaring:
Merk at alle bidrag til Wikisida.no anses som frigitt under Creative Commons Navngivelse-DelPåSammeVilkår (se
Wikisida.no:Opphavsrett
for detaljer). Om du ikke vil at ditt materiale skal kunne redigeres og distribueres fritt må du ikke lagre det her.
Du lover oss også at du har skrevet teksten selv, eller kopiert den fra en kilde i offentlig eie eller en annen fri ressurs.
Ikke lagre opphavsrettsbeskyttet materiale uten tillatelse!
Avbryt
Redigeringshjelp
(åpnes i et nytt vindu)
Denne siden er medlem av 1 skjult kategori:
Kategori:CS1-vedlikehold: Ekstra tekst
Navigasjonsmeny
Personlige verktøy
Ikke logget inn
Brukerdiskusjon
Bidrag
Opprett konto
Logg inn
Navnerom
Side
Diskusjon
norsk bokmål
Visninger
Les
Rediger
Rediger kilde
Vis historikk
Mer
Navigasjon
Forside
Siste endringer
Tilfeldig side
Hjelp til MediaWiki
Verktøy
Lenker hit
Relaterte endringer
Spesialsider
Sideinformasjon